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SECTION 1

INTRODUCTION

There are currently many different computer codes which can be used for
computations of intense impulsive loading due to high velocity impact and/or
explosive detonation. Although the current status of these codes is that they can
now be used to perform meaningful computations, it is generally agreed that there is
a need for improved strength and fracture models. There is also a need to develop
efficient procedures to obtain constants for these models.

The work described in this report is focused on two computational strength
models: The Johnson-Cook model and the Zerilli-Armstrong model.4 The report
first describes the models and discusses relative comparisons. Then model
predictions are compared with experimental data from tension/torsion tests and
cylinder impact tests. This is followed by a discussion of how cylinder impact tests
may be used to determine constants for these models. The report ends with a
summary and conclusions.

V 2
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SECTION 2

THE JOHNSON-COOK AND ZERILLI-ARMSTRONG MODELS

Most computational strength models express the equivalent (von Mises) tensile
flow stress as a function of the equivalent plastic strain rate, temperature and/or
pressure. For the Johnson-Cook model1 the equivalent tensile flow stress is
expressed as

o = 1A + B0111I + UC1][ - T*mu (I

where c is the equivalent lastic strain, t* - Ut is the dimensionless plastic strain
rate for to = 1's, and T = (T-Troom)/(Tmjt-0oon) is the homologous
temperature. The relationship is valid for 0 : T* .1.0. The five material constants
are A, B, n, C, and m.

The expression in the first set of brackets gives the stress as a function of strain
for & = 1.0 and T* = 0. The expressions in the second and third -sets of brackets
represent the effects of strain rate and temperature, respectively. At the melting
temperature T* = 1.0), the stress goes to zero for all strains and strain rates. The
basic form of the model is readily adaptable to most computer codes, since it uses
variables (e, 0*, T*) which are available in the codes.

This model has some desirable features inasmuch as it is simple to implement,
does not require excessive coi puting time or memory, can be used for a variety of
metals, constants can be straightforwardly obtained from a limited number of
laboratory tests, and the effects of the important variables are readily identifiable
and separable.

The primary disadvantage of this model is that it is empirical and, therefore,
has no sound physical basis. This means that exceptional care must be exercised
when using it for extrapolated values of c, *, and V.

Some of the motivation and background for this model can be obtained from
References 3 to 6. where an attempt was made to understand and simulate tests of
large torsional strains over a range of strain rates.

Although various test techniques can be used to obtain constants for this
model, the following has worked well) First, the yield and strain hardening con-

stants (A, B, n) are obtained from isothermal tension and torsion tests at relatively
low strain rates (W < 1.0). Next, the strain rate constant, C, is determined from
torsion tests at various strain rates, and tension tests (quasi-static and Hopkinson
bar) at two strain rates. Finally, the thermal softening constant, m, is determined
from Hopkinson bar tests at various temperatures.

3
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Sometimes it is possible to obtain the yield and strain hardening constants
(A, B, n) from cylinder impact tests. This will be more fully discussed in Section 4.

The Zerilli-Armstrong model is based on dislocation mechanics, and is, there-
fore, more physically based than the Johnson-Cook Model. The Zerilli-Armstrong
model has two forms: one for face centered cubic (fcc) metals; and another for body
centered cubic (bcc) metals.2 The expression for fcc metals is

o = CO + C2iD
2 exp(-C 3T + C4 T In ) (2)

where e is the equivalent plastic strain, t is the equivalent strain rate, and T is the
absolute temperature. The four constants are C , C2, C3, and C Here the initial
yield stress, C0, is independent of strain rate an8 temperature. iilso, the stress does
not necessarily go to zero at the melting temperature. Reference 2 provides a
discussion of how CO is affected by solute and grain size.

The expression for bcc metals is

o = C0 + Clezp(-CT + C4T lznd+C&E' n  (3)

where the variables (e, t, T) are as defined for Equation (2) and six constants are C0,
C1 C3, C, C, and n. Here the initial yield stress is a function of C C C, and C4.
Again, the stess does not necessarily go to zero at the melting tem rature,

It can be seen in Equation (2) that the strain, strain rate, and temperature
effects are all coupled together for the fcc model. In Equation (3), however, the effect
of strain hardening is separated from the coupled strain rate and temperature for the
bcc model.

The fact that the Zerilli-Armsti'ong model is based on dislocation mechanics
makes it preferable to the Johnson-Cook model. On the other hand, the more complex
form of the Zerilli-Armstrong model appears to make it more difficult to obtain the
appropriate constants.

Figure 1 shows a comparison of isothermal and adiabatic stress-strain relation-
ships for the two models ofinterest. This is done for OFIIC Copper (fcc) and Armco
Iron (bc). Cons- tants for both models were obtained from essentially the same database.l,2

For the OFHC copper, the Johnson-Cook model predicts higher adiabatic
stresses at lower strains, and lower stresses at higher strains. For both the OFHC
copper and the Armco iron, the Johnson-Cook model predicts less of a strain rate
effect than does the Zerilli-Armstrong model. Generally, however, the adiabatic
responses are similar for the two models.

Figure 2 shows the effect ofstrain rate for the two models. For the Armco Iroi
the Zerilli-Armstrong model shows a much stronger reliance on strain rate at the
higher strain rates shown. This is consistent with torsion data for Arnuco IF Iron5
and with trends predicted by other researchers.

4
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SECTION 3

COMPARISON OF MODEL PREDICTIONS AND TEST DATA

An assessment of the models can be made by comparing the model predictions to
experimental data. Figure 3 shows four comparisons for OFHC copper. The upper
left portion of Figure 3 is for dynamic Hopkinson bar test data at room temperature,
and the upper right portion is for similar data at an elevated temperature. It is
assumed that the responses are adiabatic. There is relatively good agreement
between the model predictions and the test data.

The lower portion of Figure 3 shows comparisons with quasi-static tension data
and quasi-static torsion data. Here the responses are assumed to be isothermal. Both
modes tend to underpredict the strength in tension and overpredict the strength in
torsion. This is due, in part to the fact that real materials do not always obey the von
Mises flow rule,5 which is an inherent part of most hydrocde computational
algorithms. The von Mises flow rule states that the equivalent tensile stress and
strain are o = V3 and e = y/V3, where x. and y are the shear stress and strain.

Figure 4 shows similar comparisons for Armco iron. Here again there is good
general agreement with the Hopkinson bar data. Both models tend to underpredict
the strength for the quasi-static tension and torsion data. The reason this occurs for
the Johnson-Cook model is that the primary application is for higher strain rates,
and the strain rate constant was therefore selected to give better correlation with the
higher strain rate torsion data. This results in an underprediction of strength for
lower strain rates ( < 1.0).

Another interesting evaluotion is to compare the computed shapes of cylinder
impacts onto a rigid surface, with actual test data, as shown in Figure 5. To quantify
the degree of agreement between computed shapcs and test data, an average error
has been defined as

- 1 i i,, IM)l IW

where L, D, and W are the deformed length. diameter, and bulge (dianmeter at 0.2LO
from the deformed end) from the test results, and AL, AD, and AW are the differences
between the computed and test results. It can be seen that both models give good
general agreement, but that the Zerilli-Armstrong model gives better agreement.2

The maximumn computed strains in Figure 5 fall within the range
1.57 . c s 2.04. The strain distributions in Figure 6, however, show that the
overwheEn"ng majority of the elunents experience equivalent strains less than 0.6.
Therefore, the comparisons in Figure 5 tend to reflect the accuracy of a model for
relatively low strains (c < 0.6), but do not necessarily provide a good indication for
larger strains (c > 0.6).

7
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SECTION 4

MTRMINATION OF MODEL CONSTANTS PILON CYLINDER
IMPACT TEST DATA

'Tie p receding sections have attempted to define, undtsotwi, and evaluate the
JohnsoiniCook arnd Zerilli-Armstrong strength models. The coimstarits for these
models 'were obtained primarily from torsion tests at varioijo stalis rates,
Hopkizisora bar tests at various temperatures, and quasi-sto ilc tens~ion tests.
Perforirig these tests can often be time-consuming and/or e2penaive.

?lie cylinder imipact test, on the other hand, is simple, ie xptansive, and
exhibits large strains, high strain rates, and elevated tezneraturL~s. Unfortunately,
the strains, strain rates, temperatures, and stresses vary tirihcut the test
specim~en arnd throughout the duration of the test.

baurinig the past years, there have been s Yeral attembta at defining dynamic
flow stresses frown cylinder impact test results. 10 Figure I ohow8 how cylinder
impact tesat data can be used to obtain constants for the Johrlsori.Cook Model. The
test datA are identical to those shown in Figure 5. The adiabjatic stress-strain
relatioziships are shown in Figure 8 and the strength constai'ts are given in Table 1.
The acliaatie stresses are shown only to the maximum strains sttaiiled in the
comuted results. Also included in Table 1 and Figure 8 are d4to eiora Reference 1

Por Case A-i the length, L, of the deformed clinder (QPFMC topper) is matched
with the computational result. Because only onecdeformed d.inienion. is mratched,
only oiue lidependent strength constant (representing a covaritflow stress) can be
obtained. It ean be seen that there are sigificant discreparncies between the test and
coniput~Ational results at the deformed end of the cylinder.

Co8e B-I allows for linear strain hardening. By xnatohing& both the deformed
length,~ L, and the maximum diameter, D, it is possible to ohtfeins the two constants
for the linear hardening. Here the computed result is in goto4 gemeal agreement
with the test irernlt. If this model wouldl be applied to largo~ stans than those
experienced in the computed results of Case B-i, however, it, wouli probably lead to
excessively high stresses. It is well known that thermal sot.eiiimg tends to decrease
the rate of-strain hardening at large strains, as shown in Figuro 1.

Coses C- and D-1I are based on the Johnson-Cook model of Equation (1).
Although there are five constants in this model (A B n C, w), ooly the yield and
strain hardening constants (A, B, n) are determin;'d KWo the test data. The strain
rate conostatt C, and the thermal softening constant, mn, wiet 4e approximhated or
obtained frorm other sources. Because there are now three cf>1lstunfts, it is possible to
match three deformed dimensions: the length, L, the maxithuas diameter, D), and an
interniediate dliamneter, W.

13
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TABLE 1. OFHC COPPER AND ARMCO IRON CONSTANTS FOR THE JOHNSON-COOK
MODEL, AS DETERMINED FROM CYLINDER IMPACT TEST RESULTS

CONSTANTS FOR JOHNSON - COOK MODEL OFHC COPPER
G P [Ai P [1+it T,, mi --".[A.Ben JL[.c1nJ"T m] CASE A-1 CASEB-1 CASE C-1 CASED-1 REF.1

A (Mpa) 250 157 118 98 90
B (Mpa) 0. 425 484 388 292
n 1.00 .74 .70 .31
C 0. 0. 0. .025 .025
m . 1,00 1.09 1.09

ARMCO IRON

CASE A-2 CASE B-2 CASE C-2 CASE D-2 REF.1

A (Mpa) 893 555 NOT POSSIBLE TO 175
G (M0ai 0. 134 OBTAIN CONSTANTS 380
n - 1,0 FOR CASES C-2 .32
C 0 0 AND D-2 .060
m .55

t>o-taFOR o 1.0 S-
T*w(-Twom)/imm& ,T mw )

16
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It should be noted that D and W are not totally independent of one another. For
a given length, L, W will tend to decrease as D increases. This is simply due to an
approximate conservation of the volume of the cylinder.

Case C-1 is the result obtained if nothing is known about the strain rate or
thermal softening characteristics of the material. Here, the strain rate constant is
set to C = 0 and the thermal softening is assumed to be linear, or m = 1.0. Case D-1
uses the previously determined strain rate and thermal softening constants from
Reference I and Figure 1. Even though there is little apparent difference between
Cases C-1 and D-1 for this problem, for some other problems (with wider ranges of
strain rates and temperatures) the Case D-1 constants will probably provide better
results.

Looking at Figure 8, it can be seen that there are significant discrepancies in
the various adiabatic stress-strain relationships, especially at the larger strains.
Yet, with the exception of Case A-i, they all provide a generally good correlation with
the test data. The reason for this situation is provided in the distribution of strain, as
shown previously in the upper-left portion of Figure 6. Although some of the
elements experience an equivalent plastic strain as high as 2.04, most of the elements
experience strains less than 0.6. Looking back to this specific range of strains in
Figure 8, there is good general agreement (except for Case A-i) between the various
adiabatic stress-strain relationships. Therefore, because the various models
essentially agree with one another in this relatively narrow band of strain, it would
be expected that they would give similar results for computed solutions whose strains
fall within this narrow band.

In the lower portion of Figure 7, the same approach was attempted for the
Armco iron. For Case A-2 only the length, L, was matched, giving a conttant flow
stress. For Case B-2 the length, L, and diameter, D, were matched using linear strain
hardening. The resulting adiabatic flow stresses are shown in Figure 8. There is
clearly less strain hardening in the Armco iron than in the OFHC copper.

For Cases C-2 and D-2, however, it was not possible to match all three
dimensions (L D W) by varnyin the eld and strain hardening constants (A, B, n).This is probably e to the fact tat tere is less strain hardening in the Armco iron
(when compared to the OFHC copper), and therefore less of a bulge, W. It appears
that it imply is not possible to extact strain-hardening constants for test data which
exhibit verylittle strain hardening. Also, the empirical form of Equation (1) may not
be well suited to accurately represent the Arnco iron.

For the Johnson-Cook model, it appears that it is possible to obtain the yield
and strain hardening constants (A, B, n) for some materials, but not for all materials.
This is probably dependent on the degree of strain hardening in the material. The
strain rate and thermal softening constants (C, m) must be approximated or obtained
from other sources. It is also notdesirable to extrapolate the use of the model to
larger strains than experienced in the cylinder impact test.

Looking at the Zerilli-Armstrong models in Equations (2) and (3), it can be seen
that four constants are needed for fcc metals (such as OFHC copper) and six con-
stants are needed for bc metals (such as Armco Iron). Based on previous experience
with the Johnson-Cook model, only two or three constants can be obtained from the
shape of the deformed cylinder.

17
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Looking again at Equation (2) for fcc metals, it would appear that the first two
constants (C C ) could be obtained from the cylinder impact test data, if the strain
rate and therma softening constants (C3I C ) could be approximated or obtained from
other sources. These results are shown as ase E in Figure 9. The length, L, and
diameter, D, have been matched exactly, and the resulting bulge, W, is very close to
that of the test data. The new constants (C and C2) were obtained in conjunction
with the previous values of C. and C4, as talen from Reference 2.

Another approach is to obtain the yield stress, C0, from another source, and then
solve for C2, C and C4 by matching the three deformed dimensions (L, D, W). The
yield stress in quation (2) is independent of both the strain rate and the
temperature, and can, therefore, be easily determined from simple tension tests
and/or handbook data. The results of this approach are shown as Case F in Figure 9,
where the new constants (C2, C3, C4) were obtained for the previous value of C0, as
taken from Reference 2. A summary of the constants for Cases E and F is given in
Table 2.

It is interesting to compare the adiabatic stress-strain relationships of Case D-1
(Johnson-Cook) and Case F (Zerilli-Armstrong), because both of these cases give a
perfect fit (A - 0) to the test data. These two cases, along with three other cases, are
shown in Figure 10. As expected, the responses of Cases D-1 and F are very similar at
smaller strains (e < 0.6). They are also in good general agreement at larger strains.
Case E, where only two constants were determined for the Zerilli-Armstrong model,
is also shown in Figure 10.

It should be noted that the actual values of the constants in Cases E and F may
or may not be physically realistic, For these cabes, the constants are selected only to
match the deformed shape of the cylinder. The other two curves are from Reference 1,
which presents the initial Johnson.Cook model and data, and from Reference 2,
which presents the initial Zerilli-Armstrong model and data.

An attempt was made to determine three constants (CO, C,, n) from the Zerilli-
Armstrong model of Equation (3) for Armco iron, using the reported values2 of the
other three constants (C2, C3, C ) As was the case with the Johnson-Cook model
(Cases C.2 and D-2), however, it was not possible to match all three dimensions
L, D, W) of the test results.
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CASE E CASE F

MAXZ 159EMAX.lO

_

NOTES:
*OFHC, COPPER CYLIND~ER (L1.0 25.4mm, Do 7.6mml,

LTE31T 16.2mm DTEST 13.5mm - W.Y.. r '0.1MM)
*IM.PACT VELOCITY w 1S0 MIS

*TEST RESULTS IDICATED BY DOTS..

*EQUIVALENT PLASTIC STRAWN CONTOURS SHOWN AT
o1 I 3# A4 A6 .6o 1.0A 142# 1.*5

*BOTH CASES COMPUTED WITH ZERU..LI-ARMSTRONG MODEL

FIGURE 9. EXAMPLES OF CYLINDER IM13ACT TEST RESULTS USED) TO D)ETERMINE
OPIIC COPPER CONSTANTS FOR~ THlE ZElULU.ARhlSTRONG MODEL
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TABLE 2. OFHC COPPER CONSTANTS FOR THE ZERILLI-ARMSTRONG
MODEL, AS DETERMINED FROM CYLINDER IMPACT
TEST RESULTS

C 'N T N S F R Z R L I R S R N OFH C COPPER
FACE CENTERED CUBIC MODEL NTM FRZRU RSRN

n 0.5OEX(C3.4TfS CASE E =CASEFE2

Co (Mpa) 38 .65 65

C2 (Mpa) 903 546 890

03 (00) .0028 .0025 .0028

C4 (00~) .000115 .000199 .000115
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1000

OPHO COPPER

3.U
%D

0 600.

Vi400

ADIABATIC RESPONSES
200 FOR 10,000

0R 1
0 051.0 1.6 2.0 2,5 3.0

EQUIVALENT PLASTIC STRAK C

FIGURE 10. COMPARISON OF AD1AIIATIC STRESS.SI'AIN RELTMIOSHIPS
FOR VARIOUJSOFIIC COPPER CONSTANTS. USING B0111 THE~
JOIINSON.COOK AND ZE1U.ARM.ISTRONG MJODELS
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SECTION 5

SUMMARY AND CONCLUSIONS

This report has attempted to describe and evaluate two computational strength
models, and to determine how constants might be obtained from cylinder impact test
results. Some conclusions are as follows:

* The Zerilli-Armstrong model is more physically based and provides better
agreement with the cylinder impact test data.

0 The Johnson-Cook model has a more simple form which allows the
constants to be obtained in a more straightforward manner.

* Both models show generally good agreement with Hopkinson bar test data
at relatively low strains.

* Both models show discrepancies with quasi-static tension and torsion data
at large strains. This is probably due to the inadequacy of the von Mie=
flow rule at large strains.

* Cylinder impact test results can be used to determine two or three
constants for either the Johnson-Cook model or the Zerilli-Arnstrong
model. The other constants must be estimated or obtained from other
sources,

* When the length and diameter of the cylinder impact test data are
matched by determining two constants, the resulting bulge is generally in
close agreement because the cylinder tends to conserve volume.

* The accuracy of either model has not been evaluatedfor the combination of
large strains (c > 0.6) and high-strain rates (t > 103). In unpublished
work not performed in this contract, however, the Johnson-Cook model has
been usedto give good overall predictions of Explosive Formed Penetrators
for both OFHC copper and Armco iron. Iere, most of the material is
strained to a much greater extent than it is in the cylinder-impact tests.
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